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Abstract— Urban mobility solutions such as mobility-on-
demand services have become prevalent given the convenience
of door-to-door transport. However, a majority of these ap-
proaches are user-centric greedy solutions that cause traffic
congestion. We propose a near social-optimal routing algorithm
which accounts for the overall network traffic congestion.
Specifically, we leverage on multi-class mobility options to dis-
sipate traffic congestion while maintaining near social optimal
travel time efficiency. We divide each route into three parts
with micro-mobility options such as walking or cycling for
the first and last parts and on-demand cars for the middle
part of the route. In addition, we propose a computational and
travel time efficient transit point search algorithm for switching
between different modes of travel. We validate our approach by
using a diverse set of road networks from different cities. We
achieve an average of 84% increase in network utilization by
using our proposed multi-class social model compared to single-
class user-centric approach. Our proposed transit point search
algorithm is on average 68% more computationally efficient
with an insignificant maximum average travel time delay of
less than 5 seconds compared to an optimal exhaustive routing
solution.

I. INTRODUCTION

Traffic congestion on urban road networks has been a per-
sistent problem since the 1950s [1]. The growing popularity
of on-demand mobility services like Uber, Grab, and Lyft [2],
[3], [4], have further aggravated the traffic by reaching road
capacities faster. A potential reason is that the passengers
inherently opt for the shortest route in the network. Thus,
resulting in congested roads [5] and under-utilization of the
city’s road networks.

Many countries counter traffic congestion by pedestrian-
ization of streets. For example, in the UK, they reduced
congestion by creating “out of town” commercial areas and
pedestrianizing of city centres, thereby reducing drive-able
routes in the most populated areas [6]. The pedestrianization
solutions are further augmented with multi-class mobility-on-
demand solutions for better utilization of network resources.
The concept of multi-class fleets introduced in [7] allowed
customer journeys to be broken down into separate parts for
greater accessibility and increased service coverage. Specif-
ically, the customers are recommended to either walk or
use on-demand scooters on dedicated cycle-ways [8] for the
first and last parts of their routes, to minimize their overall
travel time. The middle part of the route covers a majority
of the customer trip which uses the main road network of
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Fig. 1: Multi-class routing solution obtained using our
system-centric congestion-aware algorithm (left) and Google
Maps c© (right). The latter suggests 21 minutes of walking
with the total trip time as 53 minutes. Whereas, the path
recommended by our congestion-aware multi-class approach
suggests a reduction in the total travel time to 45 minutes at
the cost of increasing the walking option to 33 minutes.

a city and makes use of fast-speed cars or public transport.
However, this approach provides user-centric shortest path
routes without accounting for congestion.

We use this concept of multi-class fleets to disperse traffic
congestion across the network by using different modes
of travel in a near travel time social optimal combination.
Specifically, we propose a system-centric routing algorithm
which accounts for the estimated traffic congestion to provide
multi-class mobility-on-demand solution. In addition, we
propose a computational and travel time efficient transit
point search algorithm to seamlessly switch between dif-
ferent modes of travel. Even though a multi-class route
would not often be a passenger’s first choice due to the
added overhead of walking or changing transport modes,
our approach validates its benefits in dissipating congestion
and even sometimes reducing the total travel time when
such inter-class recommendations are followed. For example,
as illustrated in Fig. 1, our approach reduces the overall
travel time of a trip with a trade-off of increased usage of
micro-mobility options. Our solution also inherently provides
flexibility to the passengers in choosing their preferred mode
of transport based on accessibility and cost.

Our contributions in this paper are (a) a system-centric



congestion-aware routing framework for serving all trip
demands using mobility-on-demand vehicles; (b) a computa-
tional and travel-time efficient dynamic transit point selection
algorithm between different modes of travel that minimizes
the overall travel time in a capacity-bound transportation net-
work; (c) a robust validation of our proposed approach using
road network data from a geographically diverse set of cities.
In the following sections we highlight our aforementioned
contributions.

II. RELATED WORK

Our proposed approach provides the key desirable capa-
bilities of a multi-class mobility-on-demand system which
includes congestion-free routes along with easily accessi-
ble transit points between modes in real-time. In contrast,
the existing routing solutions are either single-class with
congestion-aware routing or multi-class user-centric routing
that do not consider network congestion. We present the
relevant approaches below.

A. Single-Class Routing

The problem of congestion-aware routing was addressed
by using a centralized network of single-class Autonomous
Mobility-on-Demand (AMoD) vehicles in [9]. The intelligent
routing and re-balancing of each AMoD vehicle on capac-
itated roads did not increase congestion for small demand
sizes. However, the trips were sub-optimally routed in event-
based batches using a greedy A* approach which resulted in
a Wardrop User equilibrium [10]. Congestion-aware route-
planning policy for AMoD system in mixed traffic partici-
pants (e.g. private vehicles) scenarios was proposed in [11].
The AMoD vehicles and their re-balancing flows were routed
using a system-centric approach. However, for high levels of
demand, pure AMoD travel was known to be detrimental due
to the additional traffic stemming from its re-balancing flows.
In addition, since non-AMoD vehicles are generally routed
in a user-centric way, the resulting system-wide routing
was sub-optimal. Therefore, our proposed approach provides
a non-greedy system-centric solution for any mobility-on-
demand vehicle while accounting for overall traffic patterns
arising from all traffic participants.

B. Multi-Class Routing

Multi-class fleets were introduced in [7] to serve requests
using a combination of heterogeneous vehicles (cars, bug-
gies, scooter, walking). The optimal fleet size for individual
class of vehicles were obtained using a genetic algorithm
which was constrained on the overall budget of the multi-
class AMoD system. Multi-class vehicles were assigned to
each customer sequentially with the objective of minimiz-
ing the travel time across first, middle and last parts of
individual customer journey. The authors report that when
the demand was much greater than the expected demand
used to optimize the fleet size, the total average travel time
for multi-class was worse than that of single-class. Hence
the authors introduce, multi-class with walking mode where
the customers are suggested to walk for the first and/or last

parts of their journey to avoid waiting time in queue during
unexpected demand periods. Similarly, in [11], the multi-
class AMoD system was implemented with moderate amount
of walking, resulting in overall system performance to be
improved by 50%. Thus indicating the benefit of multi-class
mobility-on-demand (including walking) in addressing high
demands and potentially dispersing congestion. Hence, in our
work we propose multi-class mobility on demand solution
including walking mode while additionally considering the
traffic congestion.

C. Computation Efficiency

One of the major challenge for both single-class and multi-
class congestion-aware routing algorithms is the computa-
tional efficiency of finding real-time solutions. For the single-
class system-centric routing, there is a significant amount
of work demonstrating new computationally efficient ways
to replace the traditional process of the Traffic Assignment
Problem [12]. For example, Frank Wolfe optimization [13]
and Contraction Hierarchies [14] were used in [15] to achieve
a system-optimal solution for congestion-aware routing prob-
lem. The authors showcased a 20% improvement in computa-
tion time over the traditional TAP assignments. Furthermore,
the convergence rate of Frank Wolfe can potentially be made
faster with parallel computing. In [11], various cost functions
such as the Bureau of Public roads (BPR), 2-line approxi-
mation, 3-line approximation, and Davidson’s heuristics were
compared. In case of convex problems, BPR was an effective
choice. Since we are not accounting for re-balancing flows,
our problem remains convex. Hence, we use a dynamic BPR
heuristic to quantify and account for congestion within our
framework by integrating the traffic speed bands into its
capacity term [16]. In addition we obtain real-time transit
points for switching between different modes of travel by
using the algorithm proposed in [17]. This algorithm was
originally proposed for obtaining optimal rendezvous points
by using Euclidean distances as the shortest path heuristic.
The time complexity for their proposed method is O(n2)
which is highly useful in large combinatorial problems such
as our transit point search problem.

In summary, we draw inspiration from the aforementioned
papers and propose improvements by (a) implementing a
Wardrop system equilibrium [18] with real-time congestion
information, (b) incorporating multi-class fleets to dissipate
congestion, and (c) apply a computational and travel time
efficient algorithm to obtain real-time and near-optimal dy-
namic transit points between different modes of transport.

III. PROBLEM DESCRIPTION

Given a graph G representing street network of a city with
vertices V as potential transit points between different modes
of transport, and edges E as the highways or city streets, we
would like to solve the customer routing problem in a con-
gested network using multi-class vehicles and micro-mobility
options. The problem is particularly challenging given an
assortment of edges comprising of vehicle-only roads as
well as mixed traffic streets and walkways (e.g. pedestrian



walkways and by-lanes) for a capacity bound transportation
network. The trip is distributed into three parts in order to
decrease the overall travel time of the customer. Specifically,
we propose incorporating micro-mobility options such as
walking, cycling or biking for the first and last parts of
the trip along with on-demand cars for the middle part.
The transit points between different modes of transport are
selected such that the first and the last parts of the trip can
be easily completed using the walking mode. In addition, all
customer requests are assigned paths based on a social model
in order to get the least travel time for the entire system. An
overview of our proposed solution is illustrated in Fig. 2,
where we first receive the origin-destination pair for each
customer. Next, we obtain and apply the traffic data to the
route map. Then the transit points are selected followed by
providing system-centric socially optimal routes.

Fig. 2: Multi-class congestion-aware routing framework

We apply the following assumptions in our framework:
(a) our proposed congestion-aware routing framework is
applicable to any mobility-on-demand vehicle; (b) while
routing a customer, there is always a vehicle available on
demand at the transit points; and (b) the vehicles in the
system follow multi-class recommendations given by our
framework in order to achieve a system equilibrium. (d)
the maximum expected walking time is based on average
acceptable walking distance [19]. In order to focus on solving
the main problem of efficient congestion-aware routing,
we do not address problems such as vehicle to customer
assignment, fleet sizing and re-balancing in this work.

IV. PROPOSED APPROACH

Given that a majority of customers in a mobility-on-
demand network inherently opt for a single and fast-speed
vehicle along the shortest-distance route, the resulting traffic
flow in the network becomes congested in certain parts while
being under-utilized in others. Moreover, such myopic, user-
centric routing, results in sub-optimal solution for the overall
system. Our multi-class system-centric framework divides a
customer journey into three parts with first and last parts
through pedestrian walkways in order to dissipate traffic and
reduce congestion on main roadway network.

A central challenge for multi-class congestion-aware rout-
ing problem is to dynamically select transit points in order
to get optimal entry/exit into/from the main middle part

of the network. These transit points are constrained by the
maximum acceptable walking distances for the first and last
parts of the route while minimizing the total travel time
for the entire journey. In addition, these transit points need
to be available at the intersection of pedestrian and drive-
only networks so that the continuity of the entire journey is
maintained. We consider these constraints and obtain near-
optimal transit points for congestion-aware, system-centric
routing.

A. Computing middle transit nodes

In order to compute the transit nodes, we first divide a
customer trip into three parts as given below.

X −→ A −→ B −→ Y

Where, X: Origin of request or start node of first part
A: End node of first part or start node of middle part
B: End node of middle part or start node of last part
Y: End node of last part or destination of request

For quantifying congestion information, we only use esti-
mated travel time for the middle part of the trip, as conges-
tion for first and last parts is not applicable. Specifically, we
calculate traffic travel time for the middle part of the trip
using Contraction Hierarchies with the Bureau of Public
Roads heuristic as the edge cost. We first route for the
middle part (A −→ B) as it allows to attain the maximum
flexibility in choosing transit nodes while minimizing overall
travel time. Assuming that customers are willing to walk a
maximum total of (2D) units of first and last parts of their
trip distance, we consider all nodes within D units radius
from X and Y as potential candidate transit points for the
middle part, as given below.

Candidate Sources (A) = s1, s2, . . . , sn
Candidate Targets (B) = d1, d2, . . . , dm

Since the total number of candidate paths obtained using
n candidate sources and m candidate targets is quite large
(nxm), we reduce the computation cost for finding optimal
transit points by proposing Transit Point Search algorithm
(see Algorithm 1). Our proposed transit point search algo-
rithm is based on the Hybrid algorithm presented in [17].
The Hybrid algorithm finds potential rendezvous points in a
network without potentially requiring to explore all combi-
nations of paths. The algorithm introduces an early stopping
criteria based on a guaranteed heuristic. Specifically, it uses a
Euclidean distance heuristic for fast comparison of candidate
paths to find the shortest travel time path. The algorithm
obtains the time required to travel the Euclidean path length
for all candidate paths. These paths are sorted in ascending
order of their Euclidean path travel time. Each Euclidean
path travel time is replaced in order with its corresponding
actual traffic travel time and resorted in the list of candidate
paths. This process is repeated until the traffic travel time
of the path being replaced is lesser than the Euclidean path
travel time of the path that is next in order. The algorithm
then returns the least traffic travel time path from the sorted



list of paths. This path is guaranteed to be optimal. In the
worst case scenario, the Hybrid algorithm replaces all the
candidate Euclidean path travel time paths with traffic travel
time, resulting in no reduction of computation cost.

The underlying challenge is to maximize the probability
of selecting optimal transit points that provide the shortest-
time path by analyzing only a subset of paths, and without
querying all (nxm) path combinations, as experienced in
the worst-case for the Hybrid algorithm. Hence, we update
the stopping criteria used in the Hybrid algorithm to further
improve the computation cost by imposing a hard-cutoff
based on a modified version of the Secretary problem [20].
We derive an analogy that each candidate path is analogous
to a candidate secretary considered for hiring. In our problem
formulation, we have the advantage of selecting a previously
considered path. According to the proof provided by Odds
algorithm [21] for the Secretary problem, the near-optimal
winning probability is at least within the first (nxm/e)
candidate paths. So we select the least traffic travel time path
from the sorted list of first (nxm/e) paths obtained from the
Hybrid algorithm. The end points of the selected path are our
proposed near-optimal transit points to/from the middle part
of the route. Since the total number of path combinations for
selecting optimal transit points can be in the order of 104 for
dense networks, having a near-optimal stopping policy can
significantly reduce the computation cost.

B. Compute system-optimal flows for the middle part
Once the transit points are selected, our goal is to compute

flows for the entire network such that there is no congestion
and all requests are served in minimum travel time. Given a
capacitated, symmetric network G(V,E), a set of transporta-
tion requests R := (s, d) between source s and destination
d, time to travel on an edge between nodes u and v as
t(u, v), and capacity of the edge as c(u, v), our objective
is to minimize the network congestion.

minimize:
∑
r∈R

∑
(u,v)∈E

t(u, v)fr(u, v) (1)

subject to:
∑
u∈V

fr(u, sr) =
∑
w∈V

fr(sr, w),

∀r ∈ R (2)∑
u∈V

fr(u, dr) =
∑
w∈V

fr(dr, w),

∀r ∈ R (3)∑
u∈V

fr(u, v) =
∑
w∈V

fr(v, w),

∀r ∈ R, v ∈ V \{sr, dr} (4)∑
r∈R

fr(u, v) ≤ c(u, v), ∀(u, v) ∈ E (5)

We denote a feasible traffic flow as fr(u, v) that satisfies
Equations (2), (3), (4) and (5). Constraints (2), (3) and
(4) enforce flow conservation of source, destination and
transit nodes, respectively, along with continuity of each
trip. Constraint (5) enforces the capacity constraint on each

Algorithm 1: Transit Point Search
Data: Dictionary X with Key:(Node A, Node B);

Value: Time to travel Euclidean distance
(A,B), sorted in increasing order of value

Result: Nodes (A,B) with minimum travel time
Cutoff ← Floor(Length(X)/e);
(Source,Dest)← (X[1][Source], X[1][Dest]);
minTime←∞;
for i← 1 to Length(X) do

travelT ime←
ContractionHierarchies(Source,Dest);

if i > Cutoff then
if travelT ime < minT ime then

Return current (Source,Dest)
as its optimal;

else
Return (Source,Dest) optimal
till now;

end
else

if travelT ime < minT ime then
Current (Source,Dest) is
optimal till now;
minTime← travelT ime;
if travelT ime < X[i+1][Euclidean

Travel Time] then
Return current (Source,Dest)
as its optimal;

else
(Source,Dest)← (X[i+1][Source],

X[i+1][Dest]);
end

else
if minTime < X[i+1][Euclidean Travel

Time] then
Return (Source,Dest) optimal
till now;

else
(Source,Dest)← (X[i+1][Source],

X[i+1][Dest]);
end

end
end

end

link. We obtain this LPP formulation as an instance of the
fractional multi-commodity flow problem in [22]. While we
have defined the LPP in terms of fractional flows, an integer-
valued counterpart can be defined and (approximately) solved
to find routes for each individual customer trip. Hence
we use a conditional gradient descent algorithm, Frank-
Wolfe Optimizer [13], to find system-optimal flows for all
requests. These flows are further decomposed into routes
using Dijkstra algorithm [23] with an additional non-zero
capacity check on all paths. In case an edge capacity is



(a) Singapore (b) New York (c) Paris

Fig. 3: Road networks obtained from OpenStreetMap

full and no alternate edge or a path is able to accommodate
the request then we consider the entire path for that request
infeasible. The system-centric flow is re-computed for all the
identified infeasible requests.

V. EXPERIMENTAL RESULTS
A. Setup

We validate our proposed algorithm on road networks from
three diverse cities: Singapore, New York, and Paris. The
network information is extracted using OpenStreetMap soft-
ware. We get the drive-only network by providing network
type as “drive”, and a pedestrian/cycle-way network with
network type as “walk” or “bike”. The entire network can be
visualized as a densely-connected graph as shown in Fig. 3.
It is to note that New York’s road network is a cross-section
of Manhattan distances, whereas Singapore and Paris have
curvy lanes. Hence, our heuristics (Euclidean distances) for
Transit Point Search is expected to work better for New York
while giving realistic estimates for Singapore and Paris.

We apply the following assumptions to obtain the numer-
ical results. First, the speed limits for cars and bikes are
considered according to the government regulations of the
subject city [24], [25], [26]. A list of average speeds that we
considered is categorized by vehicle type and city in Table I.
Second, all transit points chosen for middle route are within
a 500m radius from the source and destination (assuming
reasonable walking distances of up to 1km for first and last
parts of the route).

Walk (m/s) Bike (m/s) Car (m/s)
Singapore 1.78 3.7 13.89
New York 1.78 6.71 11.18

Paris 1.78 5.55 22.22

TABLE I: Speed limits for different parts of the route

In order to validate the robustness of our approach for
different traffic patterns, we use three instances of time:
12 : 00 A.M., 3 : 00 P.M., and 6 : 00 P.M; corresponding to
off, moderate and high peak times, respectively. For real-time
traffic information, we use Traffic SpeedBand Dataset [27]
collected for the duration February-March 2020 incorporated
within the BPR heuristic in its capacity term for Singapore
city. For New York and Paris, we lack real-time traffic
information and so we estimate it using a Gaussian random

variable, similar to the approach in [17] and reduce the
capacity of roads by 25% and 50% for moderate and high
peak times respectively. Congestion information is obtained
for the entire drive-only network in terms of time required
to cross a road link. For a quantitative analysis of our
proposed approach, we consider 5 batches of 500 customers
each (totaling to 2500 origin-destination (OD) trips), for
downtown Singapore, Manhattan, and Paris for a given time
frame.

B. Multi-Class Congestion-aware Routing

We compare our proposed congestion-aware multi-class
routing algorithm with single-class user-centric approach. We
evaluate the performance using the following cost metrics.

1) Flow-Time Cost: We define flow-time as the time
taken (in hours) to serve a given number of requests. Fig.
4 shows that the average reduction in the overall flow-
time cost for multi-class system-equilibrium over single-
class user-equilibrium is 12.13%, 48.45%, 53.04% in
Singapore, New York, and Paris respectively. This shows a
drastic decrease in potential network congestion by using
micro-mobility options for a very small percentage of the
entire trip. It is interesting to note that the average flow-time
cost reduction is least in Singapore potentially due to the
accurate Traffic SpeedBand Dataset.

Fig. 4: Average Flow-Time Cost

2) Network Utilization: We evaluate congestion in terms
of the infeasible trips which are caused when the edges along
all potential paths of the trip reach their maximum capacities.



Fig. 5 shows that there are much greater infeasible trips
causing increase in waiting queue size for single-class user-
equilibrium than multi-class system-equilibrium. An expla-
nation can be that edge capacities are reached faster in a
user-centric approach. For the network utilization analysis,
we infer it based on the number of infeasible trips where an
increase in the number of infeasible trips is interpreted as
a decrease in network utilization. Our framework increases
network utilization while serving more requests in a given
time interval by 74.26%, 83.78%, 92.96% Singapore,
New York, and Paris respectively.

Fig. 5: Average Network Utilization
3) Travel-Time: We compare the overall travel time be-

tween a multi-class system setup and single-class setup. Fig.
6 shows 1.72% increase in travel-time for our framework
in Singapore. This is because of the usage of micro-mobility
options in the first and last parts of the routes which
take longer travel-time than cars. However, this increase is
insignificant at the cost of serving a higher number of trips.
Since Paris and New York’s modelled travel times depend
on real path lengths rather than number of vehicles on the
road, we see a decrease in the travel time for our framework
by 67.58%, 49.97% in New York and Paris, respectively.

4) Computational Efficiency: A majority of the compu-
tational cost for our proposed multi-class congestion-aware
approach is associated with calculating the transit point for
the middle part of the route in real-time. We measure the real-
time computational efficiency of finding the transit points
in terms of (a) the travel time for the middle part of the
route and (b) the number of queries required for obtaining

Fig. 6: Average Travel-Time

the route. We compare our sub-optimal transit point search
algorithm against the Hybrid algorithm from [17] and an
optimal exhaustive search algorithm.

(i) Estimated Travel-Time: Tables II, III show that both
Hybrid and exhaustive search are optimal as they provide
minimum travel time. However, our proposed Transit Point
Search does not output optimal travel times. The average
deviation in travel times for our approach with respect to
the two baselines is 4.67, 1, 1 secs in Singapore, Paris, and
New York, respectively. Since, this deviation is insignificant
with respect to the total travel time, our proposed Transit
Point Search can be considered as near-optimal.

(ii) Number of queries: The number of queries made by
each of the three search techniques is tabulated in Table II,
III, where, obtaining the distance between between two nodes
for a path combination, constitutes a query. We observe a
significant reduction in the computation cost for our proposed
Transit Point Search algorithm over the Hybrid and the
Exhaustive search algorithms. Thus, our proposed Transit
Point Search algorithm proves to be highly computationally
efficient with an average speedup of 68% and a negligible
maximum average travel time delay (5 sec) in comparison
to the Exhaustive and the Hybrid Search algorithms for the
presented experimental results.

Therefore, our multi-class system-centric framework is
travel time cost-effective, results in better network utiliza-
tion, is computationally efficient and is a social model for
reducing congestion compared to the single-class user-centric
framework.

Travel Time (secs) No. of queries
Transit Point Hybrid Exhaustive Deviation Transit Point Hybrid Exhaustive % Reduction

Off Peak 847 843 843 4 925 2081 3756 75.37
Moderate Peak 928 924 924 4 1178 2909 3756 68.34

High Peak 961 955 955 6 1270 3208 3756 66.19
Average 912 907.33 907.33 4.67 1124.3 2732.67 3756 70.07

TABLE II: Comparison between different transit point search algorithms with real-time traffic data: Singapore
Travel Time (secs) No. of queries

Transit Point Hybrid Exhaustive Deviation Transit Point Hybrid Exhaustive % Reduction
New York 785 784 784 1 1117 2753 3245 65.58

Paris 557 556 556 1 1740 4653 5106 65.92
Average 671 670 670 1 1428.5 3703 4175.5 65.75

TABLE III: Comparison between different transit point search algorithm with estimated travel time.



VI. DISCUSSION AND CONCLUSION

In this paper, we studied the achievable benefits of using a
centrally-controlled multi-class mobility-on-demand system
for providing congestion-aware routes to customers. We
proposed a fast and efficient Transit Point Search algorithm
to find transit nodes between different modes of travel
that accounts for reasonable walking/cycling distances. Our
algorithm reduces the number of path queries by 68%,
minimizes the overall flow-time cost of the system, and
provides shortest possible routes in a capacity-bound net-
work. Our experimental results support our hypothesis that
with a small increase in the expected travel time, we can
maximize the network-utilization on an average by 84%.
In conclusion, we successfully built a social framework that
performs congestion-aware routing for multi-class mobility-
on-demand services and proves computationally better than
the state-of-the-art approaches.
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